Two weight estimates with matrix measures for well localized operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Weight Inequalities for Individual Haar Multipliers and Other Well Localized Operators

In this paper we are proving that Sawyer type condition for boundedness work for individual Haar multipliers, as well as for the Haar shift and other “well localized” operators.

متن کامل

Dispersive Estimates for Matrix Schrödinger Operators in Dimension Two

We consider the non-selfadjoint operator H = [ −∆ + μ− V1 −V2 V2 ∆− μ+ V1 ] where μ > 0 and V1, V2 are real-valued decaying potentials. Such operators arise when linearizing a focusing NLS equation around a standing wave. Under natural spectral assumptions we obtain L(R)× L(R)→ L∞(R2)× L∞(R2) dispersive decay estimates for the evolution ePac. We also obtain the following weighted estimate ‖wePa...

متن کامل

‎On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures

In ‎the present ‎paper, ‎we ‎introduce the ‎two-wavelet ‎localization ‎operator ‎for ‎the square ‎integrable ‎representation ‎of a‎ ‎homogeneous space‎ with respect to a relatively invariant measure. ‎We show that it is a bounded linear operator. We investigate ‎some ‎properties ‎of the ‎two-wavelet ‎localization ‎operator ‎and ‎show ‎that ‎it ‎is a‎ ‎compact ‎operator ‎and is ‎contained ‎in‎ a...

متن کامل

Spectral estimates for matrix-valued periodic Dirac operators

We consider the first order periodic systems perturbed by a 2N × 2N matrix-valued periodic potential on the real line. The spectrum of this operator is absolutely continuous and consists of intervals separated by gaps. We define the Lyapunov function, which is analytic on an associated N-sheeted Riemann surface. On each sheet the Lyapunov function has the standard properties of the Lyapunov fun...

متن کامل

Dispersive estimates for Schrödinger operators in dimension two

The definition of zero energy being a regular point amounts to the same as zero being neither an eigenvalue nor a resonance of H. But the exact meaning of resonance requires some care here, and we refer the reader to Definition 7 below. Theorem 1 appears to be the first L1 → L∞ bound with |t|−1 decay in R2. Yajima [Yaj] and Jensen, Yajima [JenYaj] proved the Lp(R2) boundedness of the wave opera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2019

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/7400